CHROM. 8951

Note

Das 4,4'-Tetramethyldiamino-diphenylmethan Reagens (TDM)

Eine Modifikation der Chlor-o-Tolidin Farbereaktion für die Dünnschichtchromatographie

E. VON ARX, M. FAUPEL und M. BRUGGER

Forschungslaboratorien der Division Pharma, CIBA-GEIGY AG, Basel (Schweiz) (Eingegangen am 22. Oktober 1975)

1952 veröffentlichten Rydon und Smith¹ eine Methode für den Nachweis von Peptiden und ähnlichen Verbindungen in der Papierchromatographie. Bei dieser Methode werden die getrockneten Chromatogramme einer Chloratmosphäre ausgesetzt und nach der Entfernung des überschüssigen Chlors im Luftstrom mit einer Jodkalistärkelösung besprüht. Durch die Chlorierung entstandene Chloraminderivate setzen Jod frei, das in blauschwarzen Flecken auf hellblauem Untergrund sichtbar wird.

Reindel und Hoppe² modifizierten diese Methode. Sie chlorierten die Papierstreisen nicht im trockenen Zustand, sondern nach Beseuchten mit einer Mischung von wässrigem Alkohol und Aceton. Der blaue Farbstoff entstand dann durch Baden der Streisen in einer essigsauren o-Tolidin oder Benzidinlösung unter Zusatz von Kaliumjodid. Dabei gelingt es den Blindwert des Papiers weitgehend auszuschalten. Greig und Leaback³ ersetzten gasförmiges Chlor durch eine 10–14% ige Natriumhypochloritlösung, welche auf das Papier aufgespräht wurde. Die Entwicklung erfolgte ebenfalls mit o-Tolidin-Kaliumjodid.

Weber und Langemann⁴ beschrieben Färbungen von Phenolen mit Hilfe der "Chlor-o-Tolidin Reaktion" wobei andere Phenol-Reagenzien, wie Folin-Ciocalteu, Ferrichlorid usw. an Empfindlichkeit übertroffen wurden. Alle diese beschriebenen Methoden sind jedoch schwierig zu standardisieren und die Flecken sind nicht stabil. Schwächere Flecken verblassen rasch und können nach wenigen Minuten bereits verschwunden sein. Auch ist der Gebrauch von Benzidin und seinen Derivaten ihrer Cancerogenität wegen nicht unbedenklich. Die neue TDM Variante beruht auf der Beobachtung⁵, dass 4,4′-Tetramethyldiamino-diphenylmethan (im folgenden als TDM bezeichnet) mit N-Chlorverbindungen in Lösung einen blauen Farbstoff bildet. Diese Reaktion wurde nun für den Nachweis von N-Verbindungen in der Chromatographie verwertet. In der vorliegenden Arbeit wird die Anwendung für die Dünnschichtchromatographie beschrieben.

MATERIALIEN UND METHODEN

Reagenzien

Verwendet wurden: Natriumhypochloritlösung, Handelsprodukt enthaltend

13-14% aktives Chlor, 4,4'-Tetramethyldiamino-diphenylmethan puriss. (Fluka, Buchs, Schweiz; Art. 87800), Ninhydrin puriss. (Fluka, Art. 72490) und Kaliumjodid puriss. p.a. (Fluka, Art. 60400).

Dünnschichtchromatographie

Für die Dünnschichtchromatographie wurden folgende Trägermaterialien verwendet: Trägerplatten SL₂₅₄ Silica 60 (Antec, Art. 252.792) DC-Fertigplatten Kieselgel 60 F₂₅₄ (Merck, Art. 5729) DC-Fertigplatten Cellulose F (Merck, Art. 5718) und selbstbeschichtete Aluminiumoxidplatten (45 g Aluminiumoxid DO der Fa. Camag, 135 ml Wasser und 3.5 g Gips, Schichtdicke 0.3 mm). Die Entwicklung erfolgte bei einer Laufstrecke von 15 cm in Desaga-Kammern bei Kammersättigung.

TDM-Reagens

Sprühlösung A: Natrium-hypochloritlösung (Handelsprodukt enthaltend 13-14% aktives Chlor auf sechsfaches Volumen verdünnen, im Kühlschrank haltbar).

Sprühlösung B: Gesamtmengen von Lösung C und D mischen, 1.5 ml von Lösung E dazugeben (im Dunkeln bei Raumtemperatur mindestens 1 Monat haltbar). Lösung C: 2.5 g 4,4'-Tetramethyldiamino-diphenylmethan in 10 ml Eisessig lösen (löst sich mit grünlicher Farbe) dann mit 50 ml Wasser verdünnen (falls sich Niederschlag bildet: filtrieren). Lösung D: 5 g Kaliumjodid in 100 ml Wasser lösen. Lösung E: 0.3 g Ninhydrin in 90 ml Wasser lösen und 10 ml Eisessig zugeben.

Methode

(1) Die Dünnschichtplatte nach der Chromatographie durch 15-Min Auf-

TABELLE I

QUANTITATIVE NACHWEISGRENZE VON 12 PEPTIDEN

Vergleich von TDM und RH³ (Reindel-Hoppe, Chlor-o-Tolidin-Verfahren nach Chlorierung durch Sprühen mit Natriumhypochloritlösung) in µg pro Fleck aus Chromatogrammen auf Kieselgel. Lösungsmittelsysteme: n-Butanol-Essigsäure-Wasser (67:10:23) und n-Butanol-Pyridin-Essigsäure Wasser (38:24:8:30). Die angegebenen Zahlen bezeichnen die minimale Menge Substanz, mit der ein noch sichtbarer Fleck erzeugt wird.

Peptide	Nachweisgrenze (μg)	
	TDM	RH
Z-Trp-Leu-OH	0.05	0.08
Z-Gln-Trp-Leu-OH	0.05	0.05
Z-Val-Gln-Trp-Leu-OH	0.02	0.05
H-Trp-Leu-OH	0.05	0.05
Z-Arg-Val-Gln-Trp-Leu-OH	0.05	0.05
H-Gln-Trp-Leu-OH	0.05	0.10
H-Val-Gin-Trp-Leu-OH	0.06	0.06
Z-Arg-Val-Glu[OC(CH ₃) ₃]-Trp-Leu-OH	0.05	0.10
Z-Trp-Leu-OCH ₃	0.05	0.10
Z-Gln-Trp-Leu-OCH ₃	0.05	0.10
H-Met-Glu-Arg-Val-Gln-Trp-Leu-		
Arg-Lys-Lys-Gin-Leu-Val-		
Arg-His-Asn-Phe-OH	0.05	0.08
Z-Val-Gln-Trp-Leu-OCH ₃	0.05	0.10

bewahren im Trockenschrank bei 100° trocknen (wurden pyridinhaltige Lösungsmittel verwendet, soll noch zusätzlich etwa 30 Min mit dem warmen Föhn abgeblasen werden). Die trockenen Platten mit Sprühlösung A besprühen bis sie feucht, aber nicht nass sind.

(2) Kieselgelplatten 10 Min im warmen Luftstrom trocknen. Cellulose- und Aloxplatten 45 Min mit warmem Föhn oder 5 Min bei 100° trocknen. Dann werden die Platten mit Sprühlösung B leicht besprüht. Es entstehen grüne Flecken, deren Farbe langsam von blaugrün nach blauschwarz wechselt. Dieser Vorgang kann durch Heizen mit dem Föhn oder durch Bestrahlen unter der UV-Lampe (350 nm) beschleunigt werden. Die Flecken sind mehrere Stunden stabil (unter Sauerstoff und Lichtausschluss mehrere Tage).

Die beschriebene Reaktion kann auch auf Platten ausgeführt werden, die

TABELLE II QUANTITATIVE NACHWEISGRENZE VON 30 AMINOSÄUREN

Vergleich von TDM, RH³ (Reindel-Hoppe, Chlorierung durch Sprühen mit Natriumhypochloritlösung) und NC⁶ (Ninhydrin-Collidin-Reagens) in μ g pro Fleck aus Chromatogrammen auf Kieselgel. Lösungsmittelsystem: n-Butanol-Pyridin-Essigsäure-Wasser (38:24:8:30).

Aminosäure	Nachweisgrenze (µg)			Färbung
	TDM	RH	NC	—bei NC
β-Alanin	1.0	1.0	0.05	grūn
α-Amino-n-buttersäure	8.0	10	0.05	violett
α-Amino-isobuttersäure	8.0	10	0.05	violett
ε-Amino-n-capronsaure	0.05	0.1	1.0	violett
Arginin	0.5	0.5	0.2	violett
Asparagin	0.05	0.5	2.0	gelb
Asparaginsāure	1.0	1.0	0.05	grūn
Citrullin	0.05	1.0	0.1	violett
Cysteinsäure	0.1	0.1	0.05	violett
α,α-Diaminopimelinsäure	1.0	1.5 (grau)	2.0	violett
Dijodtyrosin	1.0	1.0	5.0	violett
Glutamin	0.1	0.1	0.5	violett
Glutaminsäure	0.5	1.0	0.05	violett
Histidin	0.1	0.1	0.3	grau
Isoleucin	8.0	10	0.1	violett
Leucin	10	10	0.5	violett
Lysin	0.05	0.05	0.5	violett
Methionin	0.1	0.1	0.5	violett
Norvalin	6.8	10	0.05	violett
Ornithin	0.05	0.05	0.2	violett
Phenylalanin	0.08	0.1 (gelb)	0.2	violett
Prolin	0.1	0.2	0.5	gelb
Sarkosin	0.1	0.1	0.1	grau
Serin	1.0	1.0 (gelb)	0.2	violett
Taurin	0.05	0.1	0.2	violett
Threonin	0.5	0.1	0.5	violett
Thyroxin	0.05	0.1	2.0	braun
Tryptophan	0.1	0.1 (braun)	0.5	violett
Tyrosin	2.0	5.0	0.5	braun
Valin	8.0	10	0.05	violett

bereits mit dem Ninhydrin-, Pauly-Diazo- oder Ammoniumperchlorat-Reagens oder mit Joddampf behandelt worden sind.

ERGEBNISSE UND DISKUSSION

Das TDM-Reagens lässt sich überall dort verwenden, wo früher o-Tolidin zum Einsatz kam. Verbindungen, die mindestens ein durch Chlor substituierbares Wasserstoffatom am Stickstoff besitzen, lassen sich gut nachweisen. Dazu gehören Amine, Amide, Peptide (Tabelle I), Aminosäuren (Tabelle II) usw. Hinweise über den Nachweis von Phenolen können der Tabelle III entnommen werden. Die Vorteile des TDM-Reagens sind: hohe Empfindlichkeit, hohe Unspezifität und Konstanz der Flecken. Die Empfindlichkeit ist durchwegs gleich (in wenigen Fällen sogar noch etwas besser) als beim o-Tolidinverfahren: Die minimalen noch nachweisbaren Mengen sind bei beiden Verfahren gleich (siehe Tabelle I und II) und die Farbintensitäten der Flecke von grösseren Substanzmengen sind ebenfalls vergleichbar.

Das TDM-Reagens ist anwendbar auf verschiedenen Arten von Trägerschichten: Kieselgel, Aluminiumoxid- und Celluloseschichten wurden geprüft. Bei den beiden letzten muss lediglich die Trocknung nach der Chlorierung modifiziert werden (siehe Methoden).

Bei der Chromatographie von geschützten Peptiden werden die Platten (Kieselgel und Aluminiumoxid) am besten nach der Entwicklung mit konz. Salzsäure besprüht und erhitzt (20 Min bei 110°). Dadurch werden die Peptidderivate frei gemacht und teilweise gespalten, was die Empfindlichkeit für solche Verbindungen stark erhöht.

Das TDM-Reagens ist einfach in der Handhabung. Es wird im Chromatographielabor der Pharma-Forschung seit drei Jahren routinemässig verwendet und hat sich bei einer grossen Zahl von Verbindungen sehr gut bewährt. Es ergibt Farbflecken, die über längere Zeit haltbar sind und sich mittels Kontaktkopien oder Polaroidfotos gut dokumentieren lassen.

TABELLE III

FARBREAKTION VON PHENOLEN UND VERWANDTEN VERBINDUNGEN

Vergleich von TDM und RH³ (Reindel-Hoppe, Chlorierung durch Sprühen mit Natriumhypochloritlösung), aus Chromatogrammen auf Kieselgel. Lösungsmittelsystem: Chloroform–Methanol (95:5).

Phenol oder ähnliche Verbindung Phenol	Farbe bei 10 μg		
	TDM	RH	
	lila	violett	
Pentachlorphenol	blau	grün	
2,4,5-Trichlorphenol	blaugrau	grauviolett	
4-tertButyl-brenzkatechin	rot	orange	
p-Nitrophenol	graublau	violett	
N-Hydroxysuccinimid	grün	graugelb	
N-Hydroxybenztriazol	hellbraun	hellbraun	
8-Oxychinolin	hellbraun	rotbraun	
Chromotropsäure	grau	grau	

LITERATUR

- 1 H. M. Rydon und P. W. G. Smith, Nature (London), 169 (1952) 922.
 - 2 F. Reindel und W. Hoppe, Chem. Ber., 87 (1954) 1103.
 - 3 C. G. Greig und D. H. Leaback, Nature (London), 188 (1960) 310.
 - 4 S. H. Weber und A. Langemann, Helv. Chim. Acta., 48 (1965) 1.
 - 5 A. Loffet, J. Gobert, A. Bouteille und C. Denistry, in H. Nesvadba (Herausgeber), Peptides 1971, Proceedings of the Eleventh European Peptide Symposium, Vienna, 1971, North-Holland, Amsterdam, 1973, S. 249.
 - 5 E. von Arx und R. Neher, J. Chromatogr., 12 (1963) 329.
 - 7 W. Schlenk und A. Knorr, Justus Liebigs Ann. Chem., 363 (1908) 313.